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A priori derivation of the lattice Boltzmann equation
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The lattice Boltzmann equatidh.BE) is directly derived from the Boltzmann equation by discretization in
both time and phase space. A procedure to systematically derive discrete velocity models is presented. A LBE
algorithm with arbitrary mesh grids is proposed and a numerical simulation of the backward-facing step is
conducted. The numerical result agrees well with experimental and previous numerical results. Various im-
provements on the LBE models are discussed, and an explanation of the instability of the existing LBE thermal
models is also providedS1063-651X97)51106-§

PACS numbgs): 47.10+g, 47.11+j, 05.20.Dd

In the past few years, the lattice Boltzmann equation 1 1
(LBE) [1-3] has been demonstrated to be an effective com- Dif+ =50, 1)
putational tool for a broad variety of complex physical sys-

tems[4—6] that are problematic for conventional methods.\yhereD,=4,+ & V is the Lagrangian derivative along the

Despite the great interest in the LBEee, e.g[4-6]), ithas  mjicroscopic velocity, f=f(x,&t) is the single-particle dis-

yet to be placed on a rigorous theoretical foundation. Thigribution function,\ is the relaxation time due to collision,

lack of ana priori understanding of the LBE has, to a de- andg is the Maxwell-Boltzmann distribution function

gree, limited its application. For example, calculations based

on the LBE have not been very successful in employing p (£€—u)?

arbitrary mesh grid$5,7] and it has not proved possible to 9= 27rRTPR®H ™ RT

satisfactorily simulate thermohydrodynamic systems by

means of LBE methods8—-10]. in which R is the ideal gas constarl, is the dimension of
Historically, LBE models evolved from their Boolean the space, ang, u, and T are the macroscopic density of

counterparts, the lattice-gas automét&A) [11,17. Until mass, velocity, and temperature, respectively. The macro-

now, the theoretical framework of the LBE has rested on thescopic variables are th@nicroscopic velocity moments of

Chapman-Enskog analysis of the LGA modgld,12. In  the distribution functiorf:

other words, our understanding of the basis of LBE models

, 2

has been restricted by our knowledge of the statistical me- _f _f _ }f N2
chanics of LGA. p=| td§, pu=| £fd§, pe= 5 (§—wf d§,
In this paper, we show that the LBE is a specially dis- 3)

cretized form of the continuous Boltzmann equation. Our )
proof is rigorous and direct and in particular makes no use of"heree =DoRT/2 andD is number of the degrees of free-
the LGA. Thus we establish the LBE on a solid theoreticaldom of & particle. _ o
foundation: the Boltzmann equation. Our argument also has Eduation(l) can be formally integrated over a time inter-
immediate practical consequences. First of all, we make cleaf? o
how arbitrary mesh grids can be implemented with LBE 1
methods. Second, the Reynolds number accessible in hydrof(x+ £5,, & t+ 8,)=e %/ (x, & t)+ —e %/*
dynamic simulations by LBE methods can now be signifi- A
cantly enhanced. Third, some of the defects in some existing 5
LBE models become apparent from our derivation and we xj el'M g(x+ &', £ t+t)dt’ .
are able to propose improvements with a sound theoretical 0
basis. (4)

For the sake of simplicity and without losing generality,
we shall use the Boltzmann Bhatnagar-Gross-Kr@&K)  Assuming thats; is small enough angd is smooth enough
equation[13,14 in the following analysis. The Boltzmann [ocally, and neglecting the terms of ord&r or smaller in the
BGK equation can be written in the form of an ordinary Taylor expansion of the right-hand side of E4), we obtain
differential equation

f(x+ &5, & t+6)—f(x, & t)
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wherer=\/ 6, is the dimensionless relaxation time. {=—312, £,=0, {3=4312,
The equilibrium distribution functioy can be expanded
w,= 76, w,=2\7l3,  wz=+ml6. (12)

as a Taylor series in. By retaining the Taylor expansion up

2 .
to u, we obtain Then the integral of Eq.10) becomes

eg___ P _2 ‘ °
" arTyoR SRR |=2RT| 03U+ 3 wr0ad(£)+ 3, wiw(m},
(&u)  (£w?  u? (13)
X[H RT "2@R7T2 2rT|: ©

whereé, is the zero-velocity vector foir=0, the vectors of
For the purpose of deriving the Navier-Stokes equations, the SR T(+1, 0) andy3RT(0, +1) for a=1-4 and the vec-

above second-order expansion is sufficient. tors of y3RT(+1, +1) for «=5-8. Note that the above
To derive the Navier-Stokes equations, the following mo-quadrature is exact fan+n<5. S
ment integra' must be evaluated exacﬂy: Now momentum Space is discretized with nine discrete
velocities {£,|a=0,1,...,8. To obtain the nine-bit
model, configuration space is discretized accordingly, i.e., it
f gmflede, (7)  is discretized into a square lattice space with a lattice con-

stanced,= y3RTé,; . It should be stressed that the tempera-

where 0<m<=3 for isothermal models andom<4 other- tureT has no physical significance here because we are only

which can be evaluated by Gaussian-type quadradfise 8 to be a fundamental quantity instead, thy$SRT
=c=6,/6; orRT= c§= c?/3, wherec, is the sound speed of

) the model.
|=f exp(— &/12RT) y(§)dé By comparing Egs.(8) and (13), we can identify the
weights defined in Eq(8):
=2 Weexp(— £/2RT) §(£,), () W,=27RT exp(£/2RT)W,, , (14)
where

where ¢(§) is a polynomial in& andW, and &, are the
weights and the abscissder discrete velocities of the 4/9 —0
quadrature, respectively. Accordingly, the hydrodynamic ' a=

moments of Eqs(3) can be computed by quadrature as well: w,. =14 1/9, a=1,2,3,4 (15

1 1/36, «=5,6,7,8.
p:E fa! PUZE gafav PSZEE (ga_u)zfa!

Then the equilibrium distribution function of the nine-bit
9 model is

wheref =f _(x, t)=W, f(x, &,, t). We shall use the nine- fEI=W, (eI (x,£, 1)

bit isothermal LBE model on square lattice space as a con- 5 )

crete example to illustrate the derivation of LBE models: the R P G U S (16)

evolution equatiori5) on a discretized phase space and time, aP c? 2¢ct 2¢2 |

with a proper equilibrium distribution function leading to the

Navier-Stokes equations. where

To derive the nine-bit LBE model, a Cartesian coordinate

system is used and, accordingly, we gdi£)=£7¢). The (0,0, a=0

integral of Eq.(8) becomes e,=1{ (cod,, sind,)c, a=1,2,3,4 (17
| :( IZRD(m+n+2)| ml n (10) \/E(COya, Sinﬁa)c, a:5, 6, 7, 81

and 0,=(a—1)w/2 for a=1-4 and @—5)n/2+ w/4 for
a=5-8. Similarly, we can also derive two-dimensional six-
oo bit, seven-bit, and three-dimensional 27-bit LBE models
| = f e emde 11y  [16].
— In the above derivation, the discretization of phase space
is accomplished by discretizing momentum space in such a
and {=§&,/\J2RT or &,/J2RT. Naturally, the third-order way that a lattice structure in configuration space is simulta-
Hermite formulg15] is the optimal choice to evalualg, for  neously obtained. That is, the discretization of configuration
the purpose of deriving the nine-bit LBE model, i.e., space is determined by that of momentum space. Of course,
Iszlewjg“}". The three abscissag(;j and the corre- the discretization of momentum space and configuration
sponding weights ¢;) of the quadrature are space can be done independently. This consideration has two

where
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FIG. 1. (@ Nonuniform mesh for the backward-facing step flow simulation. The mesh sidgXN,=61x48. (b) Streamlines of the
backward-facing step flow. The solid lines and dashed lines are the results from the simulations by using the nonuniform mesh and the
uniform mesh of sizéN, X N,=385x48, respectively. The boundary conditions in both simulations are the maximum velocity at entrance
U=0.1 and the pressure at the eRif{=1.0. The mass density=1.0 and7=0.596 in the simulations. The convergence criterion is the
relative global difference of the velocity fieldwith L? norm) between two successive time iterations less thar’ 10 both simulations,
the convergence is attained after 50 000 time iterations.

immediate consequences: arbitrary mesh grids and signifé9/101 in Ref[19].) A simulation of the flow with a uniform
cant enhancement of the Reynolds number in LBE hydrodymesh of sizeN, X N,=385x 48 was also conducted. The al-
namic simulations. gorithm used is an improved LBE algorithm for the incom-
To implement arbitrary mesh grids with the LBE method, pressible Navier-Stokes equati®0], with a second-order
one first discretizes the configuration space as one desires fgbwind interpolation scheme for the nonuniform mesh. The
a particular problem, that is, one can first generate a mesheynolds number Re of the flofRe=4U(H— S)/3v [19],
according to the physics of a particular problem. Then, ofynereU is the maximum velocity in the inlgin our simu-
each grid point, one can discretize momentum space as bgion s 100. Figure (b) shows the streamlines of both
fore. Now a local LBE is built on each mesh grid point. The gimjations. The difference between the simulations with
evolution of this discretized Boltzmann equati®BE) con- 4 meshes, uniform and nonuniform, is hardly visible. The
sists of the following three steps. The first two steps are the,| tive global differencéin L2 norm) of the velocity fields
usual collision and advection process as in the previous LBE 4 simulations is about 0.47%. The location of the reat-
models. After collision and advection, interpolation follows. ;o \h ment point is¢; /S=3.13 and 3.15 with the uniform and

The interpolation process is what distinguishes the DB onuniform meshes. res ; ;
; ) pectively, compared to the experi-
from tr;‘e LBE.me?hOO]!- Bef:amuse the meshhgnqls can be arbental measurement of 3.1 in REL9]. This discrepancy of
trary, the distribution functior,, at one mesh grid point, say e reattachment location can be attributed to the slight dif-
X, cannot go to another grid point in general through therence in the geometric configuration of the flow.
advectlon.process as it can in previous LBE models. There- another important insight we have gained here is an un-
fore, the interpolation step becomes necessary 10 COnstiugk standing of the instability of the existing thermal LBE

fa(X, 1) on each and every mesh grid point from 54615 We have shown that the equilibrium distribution
fo(X+e,8, ) after the advection process. Of course, INr£ nction fﬁf“) is a special discretized form of the Maxwell-

polation brings in additional numerical error, but it can be e . (eq) .
justified as long as the error induced by interpolation doesg’ oltzmda}nn dlstrltl:r)]utlodn tfu_rrctlolig tﬁnd (fjﬁ.* h:;\_s zf'xe? fqtrm i
not affect the DBE algorithm as a whol&7]. In addition, epending on the detars of the discretizeéd velocity se

the separation of discretizations of momentum space antbel- Altering the form off.(clfq)_results in a deviation from the
: nMaxwell-Boltzmann equilibrium, which in turn can affect
ber significantly in numerical simulations without enlarging the stability of the LBE method. Pre.zviouslf/(aeq) was ob-
mesh sizes or decreasing the viscosity by adjustifi7]. In  tained by adjusting the coefficients in the polynomialuof
other words, the limitation posed by the lattice Reynoldssuch that the Navier-Stokes equation can be defi2é{j but

number[12,18 is completely overcome and the stability of the stability constraint was never considered. The scheme
the LBE method is greatly improved7]. seems to work well for the previous LBE isothermal models

As an example, we conducted a simulation of thebecause the deviation ¢f*¥ from the Maxwell-Boltzmann
backward-facing step floyi19]. Figure 1a) illustrates the equilibrium is of orderu®. However, the deviation for the
nonuniform mesh grids used in the simulation. The meshhermal models is of ordas [9] and it can be fatal. In con-
size isN,X N,=61x48. The geometry of the channel used structing a correct LBE thermal model, the equilibrium dis-
in our simulation is slightly different from that in Rdfl9]in tribution function f{*? is required not only to lead to the
terms of the ratio between the step hei§hdnd the channel Navier-Stokes equations, but also to satisfy the the Maxwell-
height H. (S/H=23/47 in our simulation as opposed to Boltzmann equilibrium so that the stability of the model is
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ensured by thed theorem. Moreover, it is noteworthy that models. In addition, our derivation of the LBE illustrates a
the LBE thermal models are implicit in principle. That systematic and consistent procedure to obtain discrete veloc-
means an additional approximation must be introduced. ity models from the Boltzmann equation. Finally, an expla-
In conclusion, we have derived the LBE from the Boltz- nation of the instability of the existing LBE thermal models
mann equation. The derivation directly connects the LBEs provided.
to the Boltzmann equation, thus the framework of the LBE . ] . ]
can be built on the established foundation of the Boltzmann X:H. would like to express his gratitude to Dr. Micah
equation and the rigorous results of the Boltzmann equatio€mbo and L.-S.L. to Dr. Gary D. Doolen of LANL for their
can be extended to the LBE. A DBE algorithm with arbitrary Support and encouragement during this work. L.-S.L. would
mesh has been proposed and validated with the simulatiodlso like to thank Professor J. Nuttall of University of West-
of backward-facing step flow. The algorithm also overcomesern Ontario for helpful discussions on quadrature and orthor-
the lattice Reynolds number barrier in previous LBE gonal polynomials.
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