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A priori derivation of the lattice Boltzmann equation
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The lattice Boltzmann equation~LBE! is directly derived from the Boltzmann equation by discretization in
both time and phase space. A procedure to systematically derive discrete velocity models is presented. A LBE
algorithm with arbitrary mesh grids is proposed and a numerical simulation of the backward-facing step is
conducted. The numerical result agrees well with experimental and previous numerical results. Various im-
provements on the LBE models are discussed, and an explanation of the instability of the existing LBE thermal
models is also provided.@S1063-651X~97!51106-8#
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In the past few years, the lattice Boltzmann equat
~LBE! @1–3# has been demonstrated to be an effective co
putational tool for a broad variety of complex physical sy
tems @4–6# that are problematic for conventional method
Despite the great interest in the LBE~see, e.g.,@4–6#!, it has
yet to be placed on a rigorous theoretical foundation. T
lack of ana priori understanding of the LBE has, to a d
gree, limited its application. For example, calculations ba
on the LBE have not been very successful in employ
arbitrary mesh grids@5,7# and it has not proved possible t
satisfactorily simulate thermohydrodynamic systems
means of LBE methods@8–10#.

Historically, LBE models evolved from their Boolea
counterparts, the lattice-gas automata~LGA! @11,12#. Until
now, the theoretical framework of the LBE has rested on
Chapman-Enskog analysis of the LGA models@11,12#. In
other words, our understanding of the basis of LBE mod
has been restricted by our knowledge of the statistical
chanics of LGA.

In this paper, we show that the LBE is a specially d
cretized form of the continuous Boltzmann equation. O
proof is rigorous and direct and in particular makes no use
the LGA. Thus we establish the LBE on a solid theoreti
foundation: the Boltzmann equation. Our argument also
immediate practical consequences. First of all, we make c
how arbitrary mesh grids can be implemented with LB
methods. Second, the Reynolds number accessible in hy
dynamic simulations by LBE methods can now be sign
cantly enhanced. Third, some of the defects in some exis
LBE models become apparent from our derivation and
are able to propose improvements with a sound theore
basis.

For the sake of simplicity and without losing generalit
we shall use the Boltzmann Bhatnagar-Gross-Krook~BGK!
equation@13,14# in the following analysis. The Boltzman
BGK equation can be written in the form of an ordina
differential equation
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whereDt[] t1j•“ is the Lagrangian derivative along th
microscopic velocityj, f[ f (x,j,t) is the single-particle dis-
tribution function,l is the relaxation time due to collision
andg is the Maxwell-Boltzmann distribution function

g[
r

~2pRT!D/2
expF2

~j2u!2

2RT G , ~2!

in which R is the ideal gas constant,D is the dimension of
the space, andr, u, andT are the macroscopic density o
mass, velocity, and temperature, respectively. The ma
scopic variables are the~microscopic velocity! moments of
the distribution functionf :

r5E f dj , ru5E j f dj , r«5
1

2E ~j2u!2f dj ,

~3!

where«5D0RT/2 andD0 is number of the degrees of free
dom of a particle.

Equation~1! can be formally integrated over a time inte
val d t :

f ~x1jd t , j, t1d t!5e2d t /l f ~x, j, t !1
1

l
e2d t /l

3E
0

d t
et8/l g~x1jt8, j, t1t8!dt8 .

~4!

Assuming thatd t is small enough andg is smooth enough
locally, and neglecting the terms of orderd t

2 or smaller in the
Taylor expansion of the right-hand side of Eq.~4!, we obtain

f ~x1jd t , j, t1d t!2 f ~x, j, t !

52
1

t
@ f ~x, j, t !2g~x, j, t !# , ~5!
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wheret[l/d t is the dimensionless relaxation time.
The equilibrium distribution functiong can be expanded

as a Taylor series inu. By retaining the Taylor expansion u
to u2, we obtain

f ~eq!5
r

~2pRT!D/2
exp~2j2/2RT!

3H 11
~j•u!

RT
1

~j•u!2

2~RT!2
2

u2

2RTJ . ~6!

For the purpose of deriving the Navier-Stokes equations,
above second-order expansion is sufficient.

To derive the Navier-Stokes equations, the following m
ment integral must be evaluated exactly:

E jmf ~eq!dj , ~7!

where 0<m<3 for isothermal models and 0<m<4 other-
wise. The above integral contains the following integ
which can be evaluated by Gaussian-type quadrature@15#:

I5E exp~2j2/2RT!c~j!dj

5(
a

Waexp~2ja
2/2RT!c~ja!, ~8!

wherec(j) is a polynomial inj, andWa and ja are the
weights and the abscissas~or discrete velocities! of the
quadrature, respectively. Accordingly, the hydrodynam
moments of Eqs.~3! can be computed by quadrature as we

r5(
a

f a , ru5(
a

ja f a , r«5
1

2(a ~ja2u!2f a ,

~9!

wheref a[ f a(x, t)[Wa f (x, ja , t). We shall use the nine
bit isothermal LBE model on square lattice space as a c
crete example to illustrate the derivation of LBE models:
evolution equation~5! on a discretized phase space and tim
with a proper equilibrium distribution function leading to th
Navier-Stokes equations.

To derive the nine-bit LBE model, a Cartesian coordin
system is used and, accordingly, we setc(j)5jx

mjy
n . The

integral of Eq.~8! becomes

I5~A2RT!~m1n12!I mI n , ~10!

where

I m5E
2`

1`

e2z2zm dz ~11!

and z5jx /A2RT or jy /A2RT. Naturally, the third-order
Hermite formula@15# is the optimal choice to evaluateI m for
the purpose of deriving the nine-bit LBE model, i.e
I m5( j51

3 v jz j
m . The three abscissas (z j ) and the corre-

sponding weights (v j ) of the quadrature are
e

-

l

c
:

n-
e
,

e

z152A3/2 , z250 , z35A3/2 ,

v15Ap/6 , v252Ap/3 , v35Ap/6 . ~12!

Then the integral of Eq.~10! becomes

I52RT Fv2
2c~0!1 (

a51

4

v1v2c~ja!1 (
a55

8

v1
2c~ja!G ,

~13!

whereja is the zero-velocity vector fora50, the vectors of
A3RT(61, 0) andA3RT(0, 61) for a51–4 and the vec-
tors of A3RT(61, 61) for a55–8. Note that the above
quadrature is exact form1n<5.

Now momentum space is discretized with nine discr
velocities $jaua50, 1, . . ., 8%. To obtain the nine-bit
model, configuration space is discretized accordingly, i.e
is discretized into a square lattice space with a lattice c
stancedx5A3RTd t . It should be stressed that the tempe
tureT has no physical significance here because we are
dealing with an isothermal model. We can therefore cho
dx to be a fundamental quantity instead, thusA3RT
5c[dx /d t orRT5cs

25c2/3, wherecs is the sound speed o
the model.

By comparing Eqs.~8! and ~13!, we can identify the
weights defined in Eq.~8!:

Wa52pRT exp~ja
2/2RT!wa , ~14!

where

wa5H 4/9, a50

1/9, a51, 2, 3, 4

1/36, a55, 6, 7, 8.

~15!

Then the equilibrium distribution function of the nine-b
model is

f a
~eq!5Wa f

~eq!~x,ja ,t !

5war H 11
3~ea•u!

c2
1
9~ea•u!2

2c4
2
3u2

2c2 J , ~16!

where

ea5H ~0, 0!, a50

~cosua , sinua!c, a51, 2, 3, 4

A2~cosua , sinua!c, a55, 6, 7, 8,

~17!

and ua5(a21)p/2 for a51–4 and (a25)p/21p/4 for
a55–8. Similarly, we can also derive two-dimensional s
bit, seven-bit, and three-dimensional 27-bit LBE mod
@16#.

In the above derivation, the discretization of phase sp
is accomplished by discretizing momentum space in suc
way that a lattice structure in configuration space is simu
neously obtained. That is, the discretization of configurat
space is determined by that of momentum space. Of cou
the discretization of momentum space and configurat
space can be done independently. This consideration has
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FIG. 1. ~a! Nonuniform mesh for the backward-facing step flow simulation. The mesh size isNx3Ny561348. ~b! Streamlines of the
backward-facing step flow. The solid lines and dashed lines are the results from the simulations by using the nonuniform mes
uniform mesh of sizeNx3Ny5385348, respectively. The boundary conditions in both simulations are the maximum velocity at en
U50.1 and the pressure at the exitP151.0. The mass densityr51.0 andt50.596 in the simulations. The convergence criterion is
relative global difference of the velocity fields~with L2 norm! between two successive time iterations less than 1027. In both simulations,
the convergence is attained after 50 000 time iterations.
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immediate consequences: arbitrary mesh grids and sig
cant enhancement of the Reynolds number in LBE hydro
namic simulations.

To implement arbitrary mesh grids with the LBE metho
one first discretizes the configuration space as one desire
a particular problem, that is, one can first generate a m
according to the physics of a particular problem. Then,
each grid point, one can discretize momentum space as
fore. Now a local LBE is built on each mesh grid point. T
evolution of this discretized Boltzmann equation~DBE! con-
sists of the following three steps. The first two steps are
usual collision and advection process as in the previous L
models. After collision and advection, interpolation follow
The interpolation process is what distinguishes the D
from the LBE method. Because the mesh grids can be a
trary, the distribution functionf a at one mesh grid point, sa
X, cannot go to another grid point in general through
advection process as it can in previous LBE models. The
fore, the interpolation step becomes necessary to cons
f a(X, t) on each and every mesh grid point fro
f a(X1ead t , t) after the advection process. Of course, int
polation brings in additional numerical error, but it can
justified as long as the error induced by interpolation d
not affect the DBE algorithm as a whole@17#. In addition,
the separation of discretizations of momentum space
configuration space allows us to increase the Reynolds n
ber significantly in numerical simulations without enlargin
mesh sizes or decreasing the viscosity by adjustingt @17#. In
other words, the limitation posed by the lattice Reyno
number@12,18# is completely overcome and the stability
the LBE method is greatly improved@17#.

As an example, we conducted a simulation of t
backward-facing step flow@19#. Figure 1~a! illustrates the
nonuniform mesh grids used in the simulation. The me
size isNx3Ny561348. The geometry of the channel use
in our simulation is slightly different from that in Ref.@19# in
terms of the ratio between the step heightS and the channe
height H. ~S/H523/47 in our simulation as opposed
fi-
-
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49/101 in Ref.@19#.! A simulation of the flow with a uniform
mesh of sizeNx3Ny5385348 was also conducted. The a
gorithm used is an improved LBE algorithm for the incom
pressible Navier-Stokes equation@20#, with a second-order
upwind interpolation scheme for the nonuniform mesh. T
Reynolds number Re of the flow@Re54U(H2S!/3n @19#,
whereU is the maximum velocity in the inlet# in our simu-
lation is 100. Figure 1~b! shows the streamlines of bot
simulations. The difference between the simulations w
two meshes, uniform and nonuniform, is hardly visible. T
relative global difference~in L2 norm! of the velocity fields
of two simulations is about 0.47%. The location of the re
tachment point isx1 /S53.13 and 3.15 with the uniform an
nonuniform meshes, respectively, compared to the exp
mental measurement of 3.1 in Ref.@19#. This discrepancy of
the reattachment location can be attributed to the slight
ference in the geometric configuration of the flow.

Another important insight we have gained here is an
derstanding of the instability of the existing thermal LB
models. We have shown that the equilibrium distributi
function f a

(eq) is a special discretized form of the Maxwel
Boltzmann distribution functiong and f a

(eq) has a fixed form
depending on the details of the discretized velocity
$ja%. Altering the form off a

(eq) results in a deviation from the
Maxwell-Boltzmann equilibrium, which in turn can affec
the stability of the LBE method. Previously,f a

(eq) was ob-
tained by adjusting the coefficients in the polynomial ofu
such that the Navier-Stokes equation can be derived@21#, but
the stability constraint was never considered. The sche
seems to work well for the previous LBE isothermal mod
because the deviation off a

(eq) from the Maxwell-Boltzmann
equilibrium is of orderu2. However, the deviation for the
thermal models is of orderu @9# and it can be fatal. In con-
structing a correct LBE thermal model, the equilibrium d
tribution function f a

(eq) is required not only to lead to the
Navier-Stokes equations, but also to satisfy the the Maxw
Boltzmann equilibrium so that the stability of the model
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ensured by theH theorem. Moreover, it is noteworthy tha
the LBE thermal models are implicit in principle. Tha
means an additional approximation must be introduced.

In conclusion, we have derived the LBE from the Bolt
mann equation. The derivation directly connects the L
to the Boltzmann equation, thus the framework of the LB
can be built on the established foundation of the Boltzma
equation and the rigorous results of the Boltzmann equa
can be extended to the LBE. A DBE algorithm with arbitra
mesh has been proposed and validated with the simula
of backward-facing step flow. The algorithm also overcom
the lattice Reynolds number barrier in previous LB
,

,
d-

d
A

n
n

on
s

models. In addition, our derivation of the LBE illustrates
systematic and consistent procedure to obtain discrete ve
ity models from the Boltzmann equation. Finally, an exp
nation of the instability of the existing LBE thermal mode
is provided.
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